New insights into the reductive half-reaction mechanism of aromatic amine dehydrogenase revealed by reaction with carbinolamine substrates.

نویسندگان

  • Anna Roujeinikova
  • Parvinder Hothi
  • Laura Masgrau
  • Michael J Sutcliffe
  • Nigel S Scrutton
  • David Leys
چکیده

Aromatic amine dehydrogenase uses a tryptophan tryptophylquinone (TTQ) cofactor to oxidatively deaminate primary aromatic amines. In the reductive half-reaction, a proton is transferred from the substrate C1 to betaAsp-128 O-2, in a reaction that proceeds by H-tunneling. Using solution studies, kinetic crystallography, and computational simulation we show that the mechanism of oxidation of aromatic carbinolamines is similar to amine oxidation, but that carbinolamine oxidation occurs at a substantially reduced rate. This has enabled us to determine for the first time the structure of the intermediate prior to the H-transfer/reduction step. The proton-betaAsp-128 O-2 distance is approximately 3.7A, in contrast to the distance of approximately 2.7A predicted for the intermediate formed with the corresponding primary amine substrate. This difference of approximately 1.0 A is due to an unexpected conformation of the substrate moiety, which is supported by molecular dynamic simulations and reflected in the approximately 10(7)-fold slower TTQ reduction rate with phenylaminoethanol compared with that with primary amines. A water molecule is observed near TTQ C-6 and is likely derived from the collapse of the preceding carbinolamine TTQ-adduct. We suggest this water molecule is involved in consecutive proton transfers following TTQ reduction, and is ultimately repositioned near the TTQ O-7 concomitant with protein rearrangement. For all carbinolamines tested, highly stable amide-TTQ adducts are formed following proton abstraction and TTQ reduction. Slow hydrolysis of the amide occurs after, rather than prior to, TTQ oxidation and leads ultimately to a carboxylic acid product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbinolamine reaction with AADH New insights into the reductive half-reaction mechanism of aromatic amine dehydrogenase revealed by reaction with carbinolamine substrates

Aromatic amine dehydrogenase uses a tryptophan tryptophylquinone (TTQ) cofactor to oxidatively deaminate primary aromatic amines. In the reductive half-reaction, a proton is transferred from the substrate C1 to Asp128β O2, in a reaction that proceeds by H-tunneling. Using solution studies, kinetic crystallography and computational simulation we show that the mechanism of oxidation of aromatic c...

متن کامل

New insights into the multi-step reaction pathway of the reductive half-reaction catalysed by aromatic amine dehydrogenase: a QM/MM study.

Computational insight into the multi-step reaction cycle of aromatic amine dehydrogenase is presented, identifying the energy landscape and pathway for multiple proton transfers. This atomistic picture of the reaction sequence--including short-lived reaction intermediates and a stepwise reaction mechanism--bridges the gap between a small number of crystallographic snapshots.

متن کامل

Silanol-Assisted Carbinolamine Formation in an Amine-Functionalized Mesoporous Silica Surface: Theoretical Investigation by Fragmentation Methods.

The aldol reaction catalyzed by an amine-substituted mesoporous silica nanoparticle (amine-MSN) surface was investigated using a large molecular cluster model (Si392O958C6NH361) combined with the surface integrated molecular orbital/molecular mechanics (SIMOMM) and fragment molecular orbital (FMO) methods. Three distinct pathways for the carbinolamine formation, the first step of the amine-cata...

متن کامل

Umpolung synthesis of branched α-functionalized amines from imines via photocatalytic three-component reductive coupling reactions.

A three component reductive coupling reaction of a (hetero)aromatic amine, a (hetero)aromatic aldehyde and an electron deficient olefin catalysed by eosin Y under green LED light irradiation, for the direct generation of γ-amino acid derivatives, is described. This new umpolung synthesis of amines, which exploits the high nucleophilicity of a putative α-amino radical intermediate, generated via...

متن کامل

Synthesis and characterization of derived imines from 4-imino-5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-3(4H)-amine

The synthesis and characterization of derived imines from 4-imino-5,6,7,8-tetrahydro-1-benzo thieno[2,3-d]pyrimidin-3(4H)-amine 3 has been developed in 3 steps through the reaction of heteroaromatic o-aminonitrile 1 with triethyl orthoformate afforded the corresponding imido ester 2 followed by cyclization with hydrazine hydrate to furnish iminothienopyrimidineamine 3 and finally the imination ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 33  شماره 

صفحات  -

تاریخ انتشار 2007